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The point at which two random rough surfaces make contact takes place at the contact of the highest
asperities. The distance upon contact d0 in the limit of zero load has crucial importance for determination of
dispersive forces. Using gold films as an example we demonstrate that for two parallel plates d0 is a function
of the nominal size of the contact area L and give a simple expression for d0�L� via the surface roughness
characteristics. In the case of a sphere of fixed radius R and a plate the scale dependence manifests itself as an
additional uncertainty �d�L� in the separation, where the scale L is related with the separation d via the
effective area of interaction L2��Rd. This uncertainty depends on the roughness of interacting bodies and
disappears in the limit L→�.
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I. INTRODUCTION

The absolute distance separating two bodies is a param-
eter of principal importance for the determination of disper-
sive forces �van the der Waals,1 Casimir,2 or more general
Casimir-Lifshitz force3�. The absolute distance becomes dif-
ficult to determine when the separation gap approaches nan-
ometer dimensions. This complication originates from the
presence of surface roughness, which manifests itself on the
same scale. In fact, when the bodies are brought into gentle
contact they are still separated by some distance d0, which
we call the distance upon contact due to surface roughness.

We are interested in the dispersive forces when stronger
chemical or capillary forces are eliminated. In this case d0
has a special significance for adhesion, which is mainly due
to van der Waals forces across an extensive noncontact area.4

The distance d0 is important for micro �nano� electro me-
chanical systems �MEMS� because stiction due to adhesion
is the major failure mode in MEMS.5 Furthermore, the dis-
tance upon contact plays an important role in contact
mechanics6 is very significant for heat transfer,7 contact
resistivity,8 lubrication, and sealing.9 In addition, it has also
importance in the case of capillary forces and wetting,10–12

where knowledge of d0 provides further insight of how ad-
sorbed water wets a rough surface.

The distance upon contact d0 between a sphere and a
plate13,14 plays a key role in modern precise measurements of
the dispersion forces �see Ref. 15 for a review� where d0 is
the main source of errors. In Casimir force measurements d0
is determined using electrostatic calibration. In this case the
force dependence on the separation is known, and one can
determine the absolute separation �see resent
discussions16–18�. Even when the distance is not counted
from the point of contact16,17,19 local realization of roughness
as shown in this paper will contribute to uncertainty of the
absolute separation.

Independent attempts to define d0 were undertaken in ex-
periments measuring the adhesion energy.4 It was proposed20

to take d0 as the sum of the root-mean-square �rms� rough-
nesses of two surfaces upon contact. This definition is, how-
ever, restricted and can only be used for rough estimates as
stressed in Ref. 20. Obviously, the distance upon contact has
to be defined by the highest asperities.

In this paper we present a simple method for determina-
tion of d0 from the roughness profiles of the two surfaces
coming into contact. For two plates it is explicitly demon-
strated that d0�L� is scale dependent, where L2 is the area of
nominal contact. We discuss also application of our method
to the sphere-plate configuration. In this case it is shown that
d0 determined from the electrostatic calibration can differ
from that playing role in the dispersive force and the differ-
ence is scale �separation� dependent.

In Sec. II we report briefly the details of our film prepa-
ration and characterization. In Sec. III the roughness profiles
in the plate-plate configuration are discussed and the main
relation connecting d0 with the size of the nominal contact is
deduced. The sphere-plate configuration is discussed in Sec.
IV together with uncertainty in d0. Our conclusions are col-
lected in Sec. V.

II. EXPERIMENTAL

The surfaces we use in this study were gold films grown
by thermal evaporation onto oxidized silicon wafers with
thicknesses in the range 100–1600 nm and having different
rms roughness. A polysterene sphere �radius R=50 �m�, at-
tached on a gold coated cantilever, was first plasma sputtered
with gold for electrical contact, and then a 100 nm gold film
grown on top of the initial coating. The deposited films were
of uniform thickness and of isotropic surface morphology as
was confirmed independently with atomic force and scanning
electron microscopy on different locations.

The surface profile was recorded with Veeco Multimode
atomic force microscope �AFM� using Nanoscope V control-
ler. To analyze the effect of scale dependence, megascans of
large area up to 40�40 �m2 were made and recorded with
the lateral resolution of 4096�4096 pixels. The maximal
area, which we have been able to scan on the sphere, was
8�8 �m2 �2048�2048 pixels�. All images were flattened
with linear filtering; for the sphere the parabolic filtering was
used to exclude the effect of curvature. Figure 1 shows the
images of the 100 nm film �a� and the sphere �b� on different
scales. Approximately 10 images of smaller size 500
�500 nm2 were recorded for each film and for the sphere to
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obtain the correlation length � of the rough surfaces.21 Fi-
nally, the electrostatic calibration was used for the determi-
nation of the cantilever spring constant and d0.22

III. PLATE-PLATE CONTACT

Consider first two parallel plates, which can come into
contact. A plate surface can be described by a roughness
profile hi�x ,y� �i=1,2 for body 1 or 2�, where x and y are the
lateral coordinates. The averaged value over large area of the
profile is zero, �hi�x ,y��=0. Then the local distance between
the plates is

d�x,y� = d − h1�x,y� − h2�x,y� , �1�

where d is the distance between the average planes. We can
define the distance upon contact d0 as the largest distance
d=d0, for which d�x ,y� becomes zero.

It is well known from contact mechanics23 that the contact
of two elastic rough plates is equivalent to the contact of a
rough hard plate and an elastic flat plate with an effective
Young’s modulus E and a Poisson ratio �. In this paper we
analyze the contact in the limit of zero load when both bod-
ies can be considered as hard. This limit is realized when
only weak adhesion is possible, for which the dispersive
forces are responsible. Strong adhesion due to chemical
bonding or due to capillary forces is not considered here.
This is not a principal restriction, but the case of strong ad-
hesion has to be analyzed separately. Equation �1� shows that
the profile of the effective rough body is given by

h�x,y� = h1�x,y� + h2�x,y� . �2�

The latter means that h�x ,y� is given by the combined image
of the surfaces facing each other.

Let L0 be the size of the combined image. Then, in order
to obtain information on the scale L=L0 /2n, we divide this
image on 2n subimages. For each subimage we find the high-
est point of the profile �local d0�, and average all these val-
ues. This procedure gives us d0�L� and the corresponding
statistical error. Megascans are very convenient for this pur-
pose otherwise one has to collect many scans in different
locations.

For the 100 nm film above the 400 nm film the result of
this procedure is shown in Fig. 2. We took the maximum area
to be 10�10 �m2. The figure clearly demonstrates the de-
pendence of d0 on the scale L although the errors appear to
be significant. The inset shows the dependence of the rms
roughness w on the length scale L. This dependence is absent
in accordance with the expectations, while only the error bars
increase when L is decreasing.

To understand the dependence d0�L� let us assume that the
size L of the area of nominal contact is large in comparison
with the correlation length, L	�. It means that this area can
be divided into a large number N2=L2 /�2 of cells. The height
of each cell �asperity� can be considered as a random vari-
able h.24 The probability to find h smaller than some value z
can be presented in a general form

P�z� = 1 − e−
�z�, �3�

where the �phase� 
�z� is a nonnegative and nondecreasing
function of z. Note that Eq. �3� is just a convenient way to
represent the data: instead of cumulative distributions P�z�
we are using the phase 
�z�.

For a given asperity the probability to find its height
above d0 is 1− P�d0�, then within the area of nominal contact
one asperity will be higher than d0 if

FIG. 1. �Color online� AFM megascan of the 100 nm film �a�
and the sphere �b�. The insets show the highlighted areas at higher
magnifications.
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FIG. 2. �Color online� Distance upon contact as a function of the
length scale. Dots with the error bars are the values calculated from
the megascans. The solid curve is the theoretical expectation ac-
cording to Eq. �4�. The inset demonstrates absence of the scale
dependence for the rms roughness.
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e−
�d0��L2/�2� = 1 or 
�d0� = ln�L2/�2� . �4�

This condition can be considered as an equation for the as-
perity height because due to a sharp exponential behavior the
height is approximately equal to d0. To solve Eq. �4� we have
to know the function 
�z�, which can be found from the
roughness profile.

The cumulative distribution P�z� can be found from a
roughness profile by counting pixels with the height below z.
Then the �phase� can be calculated as 
�z�=−ln�1− P�. The
results are presented in Fig. 3. It has to be noted that the
function 
�z� becomes more dispersive at large z. This effect
was observed for all surfaces we investigated. To solve Eq.
�4� we have to approximate the large z tail of 
�z� by a
smooth curve. Any way of the data smoothing is equally
good, and our method is not relied on specific assumptions
about the probability distribution. The procedure of solving
Eq. �4� is shown schematically in Fig. 3, and the solution
itself is the continuous red �light gray� curve in Fig. 2.

It has to be mentioned that the normal distribution fails to
describe the data at large z. Other known distributions are not
able satisfactory describe the data at all z. Asymptotically at
large z the data can be reasonably well fit with the general-
ized extreme value distributions Gumbel or Weibull.25,26 This

fact becomes important if one has to know d0 for the size L,
which is larger than the maximal scan size. In this case one
has to extrapolate 
�z� to large z according to the chosen
distribution. In this paper we are not doing extrapolation us-
ing only 
�z� extracted directly form the megascans.

The observed dependence d0�L� can be understood intu-
itively. The probability to have one high asperity is exponen-
tially small but the number of asperities increases with the
area of nominal contact. Therefore, the larger the contact
area, the higher probability to find a high feature within this
area.

Our result found in the limit of zero load will hold true if
the elastic deformation of the highest asperity will be small
��d0�. Applying Hertzian theory to an asperity of radius � /2
one finds the restriction on the load p,

p � �2�/9d0�1 − �2�−1�d0
2/L2�E . �5�

If p=AH /6�d0
3 is the van der Waals pressure �AH is the Ha-

maker constant� then �5� for the Au parameters restricts d0
and L as �d0 /10nm�4.5�L /10�m�−2	0.3. This condition is
true in the range of main interest. For the sphere-plane case
�see below� Eq. �5� can be modified accordingly but in gen-
eral the physical contact is not assumed for the sphere-plate
configuration.

IV. SPHERE-PLATE CONTACT

The other question of great practical importance is the
distance upon contact between a sphere and a plate. In the
experiments13,14,17,19,22 the sphere attached to a cantilever or
an optical fibre approaches the plate. Assuming that the
sphere is large, R	d, the local distance is

d�x,y� = d + �x2 + y2�/2R − h�x,y� , �6�

where h�x ,y� is the combined profile of the sphere and the
plate.

Again, d0 is the maximal d, for which the local distance
becomes zero. This definition gives

d0 = max
x,y

�h�x,y� − �x2 + y2�/2R� . �7�

In contrast with the plate-plate configuration now d0 is a
function of the sphere radius R, but, of course, one can define
the length scale LR corresponding to this radius R �see be-
low�.

TABLE I. The parameters characterizing the sphere-film systems �all in nm�. The first five rows were
determined from combined images �see text�. The last row d0

el gives the values of d0 determined electrostati-
cally. The last four rows were determined for R=50 �m.

100 nm 200 nm 400 nm 800 nm 1600 nm

w 3.8 4.2 6.0 7.5 10.1

� 26.1�3.8 28.8�3.7 34.4�4.7 30.6�2.4 42.0�5.5

LR 920 1050 1470 1560 2100

d0
th 12.5 14.0 22.8 31.5 53.0

d0
im 12.8�2.2 15.9�2.7 24.5�4.8 31.3�5.4 55.7�9.3

d0
el 17.7�1.1 20.2�1.2 23.0�0.9 34.5�1.7 50.8�1.3
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FIG. 3. �Color online� Statistics of the surface roughness. Four
10�10 �m2 images were used. The main graph shows the �phase�
as a function of z. The continuous red �light gray� curve is the best
fit of the data at large z and the dashed lines demonstrate the solu-
tion of Eq. �4�. The top inset presents the logarithm of the density
function. The bottom inset shows the cumulative distribution.
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As input data in Eq. �7� we used the combined images of
the sphere and different plates. The origin �x=0, y=0� was
chosen randomly in different positions and then d0 was cal-
culated according to Eq. �7�. We averaged d0 found in 80
different locations to get the values of d0

im, which are col-
lected in Table I.

We can estimate the same value theoretically. A circle of a
finite area L2 is important in Eq. �7�. Asperities of the size �
are distributed homogeneously within this circle. Then the
averaged value of the second term in Eq. �7� is L2 /4�R. The
averaged maximal value of h�x ,y� is the distance upon con-
tact between two plates of the size L. This distance is the
solution of Eq. �4�. In this section we will denote it as d0

pp�L�
not to mix with d0 in the sphere-plate configuration. Then
one can find d0 for the sphere-plate contact by maximizing
Eq. �7� on L,

d0 = max
L

�d0
pp�L� − L2/4�R� . �8�

The solution of this equation defines d0
th and the scale LR

corresponding to the maximum. The values of d0
th and LR

found from Eq. �8� are given in Table I for the radius R
=50 �m.

One can see that d0
th is in agreement with d0

im determined
from the combined images. Comparing it with the values d0

el

determined electrostatically one sees that in the first two col-
umns the values of d0

el are considerably larger. Moreover, the
errors in d0

el are smaller than in d0
im.

We described d0 as the value determined from the area LR
2

and averaged over its different locations. Determination of d0
from the electrostatic measurements did not undergo this
type of averaging. As a result it is sensitive to the local
roughness realization near the contact location. This explains
why the errors in d0

el are smaller: statistical variation of d0
from place to place is not included in the errors of d0

el.
Very different local values of d0 can be found, and for this

reason d0
el can deviate significantly from the mean value.

Choosing arbitrarily the contact locations in the image of the
sphere and the 100 nm film we found, for example, that
about 5% of the cases are in agreement with the measured
value d0

el=17.7�1.1 nm. One can imagine that the place of
contact on the sphere has at least one asperity above the

average. In the combined image the sphere dominates since
it is rougher than the film, wsph=3.5 nm and w100=1.5 nm.
Because the sphere is rigidly fixed on the cantilever the same
feature will be in the area of contact for any other location or
other film. Already for the sphere above 400 nm film the
high feature on the sphere will not play significant role be-
cause the roughness of the film, w400=4.9 nm, is higher than
that for the sphere. In this case we would expect that d0

el has
to be in agreement with the averaged value found from the
image that is precisely what happens.

Consider now the experimental situation when the disper-
sive force is measured in the sphere-plate configuration. The
system under consideration is equivalent to a smooth sphere
above a combined rough profile h�x ,y�. The position of the
average plane depends on the area of averaging L2 especially
for small scales L. The profile shown in Fig. 4 demonstrates
different mean values in the left and right segments shown
by the dashed black lines. Both of these values deviate from
the middle line for the scale 2L �solid black line�. The true
average plane is defined for L→�.

From Fig. 4 one can see that d0 for L and 2L differ on
�d=d0�L�−d0�2L�. To be more precise we can define the
uncertainty in d0 as �d�L�=d0�L�−d0, where we understand
d0 as the value counted from the true average plane �L
→��. The distance between bodies is then d=d0+�d�L�
+
d, where 
d is the displacement from the contact point.
The scale L is defined by the effective area of interaction
L2=��Rd ��=2 for the electrostatic and �=2 /3 for the pure
Casimir force�. Suppose that d0 found from the electrostatic
calibration can be considered as a true value �the electrostatic
scale is large, Lel→�� then in the dispersive force measure-
ment the bodies are separated by d=d0+�d�Ldis�+
d with
the related scale Ldis=���Rd.

For a fixed L the uncertainty �d is a random variable
distributed roughly normally around �d=0. However, it has
to be stressed that �d manifests itself not as a statistical error
but rather as a kind of a systematic error. This is because at
a given lateral position of the sphere this uncertainty takes a
fixed value. The variance of �d is defined by the roughness
statistics. It was calculated from the images and shown as
inset in Fig. 4. One has to remember that with a probability
of 30% the value of �d can be larger than that shown in Fig.
4.

V. CONCLUSIONS

In conclusion, it is shown that the distance upon contact
depends on the lateral size of contacting plates and a simple
formula describing d0�L� is presented. For the sphere and
plate an additional uncertainty in the absolute separation d is
revealed arising due to variation of the average plane posi-
tion with the effective area of interaction or equivalently
with the separation. Its magnitude depends on the roughness
of interacting bodies.
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and R. Onofrio. The research was carried out under Project
No. MC3.05242 in the framework of the Strategic Research
Programme of the Materials Innovation Institute M2i �the
former Netherlands Institute for Metals Research �NIMR��.
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Research Network CASIMIR.
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